Entropia Implicatii filosofice
Inegalitatea ΔS ≥ 0 arata ca cea mai probabila variatie a entropiei unui sistem este cresterea sa. Nu are sens sa se
aplice principiul al II-lea al termodinamicii ΔS ≥ 0, la un sistem nelimitat cum este universul. O astfel de incercare
nefireasca a fost facuta de Clausius (1867): aplicand principiul al doilea la intregul univers el a ajuns la concluzia ca mai
devreme sau mai tarziu, entropia universului va atinge valoare maxima, cand se ajunge la echilibru. Aceasta ar insemna ca odata
cu trecerea timpului toate formele de energie (mecanica, electromagnetica, chimica etc.) ar trece in forma energiei termice de
miscare dezordonata a moleculelor si ca urmare temperatura tuturor corpurilor din univers s-ar egala. Toate procesele ar inceta
si s-ar ajunge la asa numita moarte termica a universului. Clausius a ajuns la aceasta concluzie pentru ca nu a tinut cont de
faptul ca in univers are loc intotdeaunan o transformare reciproca a diferitelor forme de miscare. Concluzia mortii termice
este infirmata de faptul ca in diferite parti ale universului au loc fluctuatii. Marimea si durata acestor fluctuatii pot fi
foarte mari si prin aceasta, starea de echilibru termodinamic se strica.
Principiul al III-lea al termodinamicii
Acest principiu are ca scop fixarea valorii constantei aditive ce apare in expresia entropiei prin integrarea relatiei
dS = δQ/T. Intradevar, asa cum reiese si din relatia ∫δQ/T = S
B - S
A, principiul al II-lea
nu permite decat determinarea variatiilor de entropie. Pentru a se putea calcula insasi valoarea entropiei unui sistem intr-o
stare data, trebuie cunoscuta constanta aditiva care apare prin integrarea relatiei dS = δQ/T, rezulta
S + const = ∫δQ/T
In lipsa determinarii entropiei unei stari se calculeaza energia libera F si entalpia libera G folosind principiul intai
pentru procese ireversibile.
dU = δQ - pdV
δQ = dU + pdV
δQ/T < dS si δQ <TdS
Inlocuim δQ
dU + pdV < TdS sau dU + pdV - TdS Entropia Implicatii filosofice 0
Daca procesele se petrec la V si T constant
d ( U - TS ) < 0, unde U - TS = F (energia libera)
Daca procesele se petrec la p si T constant, relatia dU + pdV - TdS < 0 se scrie
d ( U + pV - TS ) < 0, unde U + pV = H
G = H - TS, G este entalpia libera.
F si G nu sunt determinate deoarece in expresiile lor apare produsul TS. Aceste marimi sunt determinate cu aproximatia unui termen aditiv . Principiul al treilea al termodinamicii poate fi formulat :
Cand temperatura T tinde catre zero, entropia tinde catre o valoare constanta care nu depinde de valorile celorlalte marimi de stare
De regula se alege S(0) = 0, cu alte cuvinte se adopta formularea principiului al treilea data de catre Planck:
Entropia unui sistem este nula la temperatura de zero absolut
Formularea data de Nernst :
In domeniul lui zero absolut entropia unui corp aflat in stare de echilibru termodinamic nu depinde de temperatura si de ceilalti parametrii de stare ai corpului
T→0 K , S→ S
o (constanta).
Ştiaţi că :
¤ . . . asa cum stelele se grupeaza in galaxii, tot asa si galaxiile se grupeaza formand grupuri locale sau chiar metagalaxii.
¤ . . . grupul local de galaxii din care face parte si Galaxia noastra este constituit din 24 de componente.
¤ . . . cele mai apropiate galaxii, adevarati "sateliti" ai Galaxiei noastre sunt Marele Nor al lui Magellan si Micul Nor al lui Magellan . Ambele galaxii se afla la distanta de 45000 parseci (1parsec = 30,8·1012 km).
¤ . . . sistemul solar a facut abia 13 rotati complete in jurul centrului Galaxiei de la momentul initialal al Big Bang-ului (marea explozie universala).
¤ . . . exista un analog al anotimpurilor anului terestru care s-ar putea numi
"anotimpurile galactice."
¤ . . . Pamantul are diametrul de 12700 km si se afla la distanta de 150 milioane km de Soare. Pamantul se roteste in jurul Soarelui pe o circumferinta cu lungimea de 942 milioane de km cu viteza de 30 km/s.